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Background: Accurate assessment of movement limitations and compliance monitoring of exercises to 
restore movement are necessary to tailor treatments for individuals with motor deficits. Although several 
commercial-grade technologies are available to clinicians for evaluating movement limitations, they require 
one-on-one time-consuming assessments with limited reproducibility across care settings. To address these 
limitations, a wearable inertial sensors for exergames (WISE) system has been designed with: (I) an animated 
virtual coach to deliver instruction and (II) a subject-model whose movements are animated by real-time 
sensor measurements from the WISE system worn by a subject. This paper examines the WISE system’s 
accuracy and usability for the assessment of upper limb range of motion (ROM). 
Methods: Seventeen neurologically intact subjects were recruited to participate in a usability study of the 
WISE system. The subjects performed five shoulder and elbow exercises for each arm instructed by the 
animated virtual coach. The accuracy of ROM measurements obtained with the WISE system versus those 
obtained with the Kinect™ were compared using the root mean square error (RMSE) of the computed joint 
angles. The subjects additionally completed a system usability scale (SUS) to evaluate the usability of the 
virtual coach for tutoring ROM exercises. 
Results: The absolute agreement between the WISE and Kinect devices was moderate to very good and 
it was limited because the Kinect sensor suffers from occlusion. The Bland-Altman limits of agreement 
for the exercises in the coronal and transverse planes were within the acceptable limits of ±10°. The SUS 
response data produced relatively high third and first quartile scores of 97.5 and 82.5, respectively, with the 
interquartile range of 15 and the minimum score of 65, suggesting that the subjects were interested in using 
the animated virtual coach for tutoring ROM exercises.
Conclusions: An animated virtual coach-based WISE system for mHealth is presented, tested, and 
validated for guided upper limb ROM exercises. Future studies with patient populations will facilitate the use 
of these devices in clinical and telerehabilitation settings.  
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Introduction

Recent years have witnessed the emergence of digital health 
using advanced technologies such as wearable sensors 
and embedded controllers to enhance access to medical 
diagnostics and treatments (1,2). Because of an accelerating 
trend in the number of stroke survivors requiring 
rehabilitation (3), healthcare services worldwide are 
considering technological solutions to enhance accessibility 
to assessment and treatment. For example, virtual therapists 
and telerehabilitation have been proposed to complement 
the skills of therapists (4,5). However, some of the challenges 
faced by these technologies are clinical acceptance, high 
equipment cost, accuracy, and ease of use (4). 

Most tasks constituting activities of daily living have 
minimum range of motion (ROM) requirements at various 
joints (6). Restoring the ability to perform activities of daily 
living in individuals with impaired movement therefore 
requires clinicians to assess ROM and customize the 
exercises to each patients’ activity limitations. Commercially 
available devices such as goniometers (7), inclinometers (8),  
and videographic methods (9) are used by therapists to 
assess patient’s ROM in one-on-one clinical settings. 
Goniometers and inclinometers have limited inter-observer 
agreement due to variability in positioning the sensors on 
the patient’s body and can capture motion only for one 
joint at a time. Videographic methods also show low inter-
observer agreement due to differences in camera positions 
and often require extensive post-acquisition data analysis. 
Furthermore, these methods are not suitable for remote 
assessments and individualized treatments, which are 
essential to enhance accessibility. 

The Kinect™ V2 (Microsoft Corp., Redmond, WA, 
USA) is a popular markerless motion capture system used 
for gaming (10). The Kinect can provide high definition 
video output, depth information, and position information 
for 25 joints of the human body in 3D space (10). Several 
studies have reported the use of the Kinect sensor in ROM 
assessment and rehabilitative applications (11-19). Gait 
analysis and joint angle (JA) orientation measurements 
using the Kinect has shown varying levels of agreement 
for different joint segments (11,16,17,19,20). Under 
ideal conditions, the shoulder and elbow joint ROM 
measurements from the Kinect show good inter-trial 
repeatability and correlate with measurements taken with a 
goniometer (19,21). However, the placement of Kinect is a 
limiting factor: placing it in front of a subject yields reliable 
measurements in contrast to placing it on the side (22), but 

fails to correctly measure elbow flexion-extension accurately 
from a neutral position (11,22) and cannot measure forearm 
pronation-supination. Furthermore, a recent literature 
review on the use of repurposed gaming consoles, such as 
the Kinect, for neurorehabilitation in target populations 
reported an inability to provide individualized training as a 
major limitation (23). 

An alternative approach for ROM and rehabilitation 
assessment applications is to use inertial sensors, which 
include inertial measurement units (IMU) and magnetic, 
angular rate, and gravity (MARG) sensors that measure the 
linear acceleration and angular velocity of a rigid body to 
which they are attached. Commercially available wearable 
inertial sensors for motion capture can be used for ROM 
assessment (24,25), but their use for rehabilitation is limited 
by the cost of custom data acquisition software, need for 
user-training, and the extensive data analysis required 
post-acquisition. Although (26,27) have shown that it is 
possible to extract absolute orientation of a rigid body from 
raw measurements of the IMU and MARG sensors, their 
methods are yet to be extended for use in rehabilitation 
applications requiring JA measurements. 

Telerehabilitation is a branch of emerging medical 
innovation that permits assessment and treatment of 
patients remotely. Repurposed off-the-shelf media 
platforms (e.g., Skype, VSee, etc.) and interactive gaming 
consoles (e.g., Kinect, PlayStation, Wii, etc.) have been 
used in prior research efforts for telerehabilitation (28,29). 
However, most telerehabilitation applications are limited by 
(I) an inability to capture measurements accurately and with 
high inter-observer agreement easily in a remote manner 
and (II) provide individualized coaching asynchronously, 
i.e., without a live coach. To address these limitations, we 
designed a wearable inertial sensors for exergames (WISE) 
system consisting of: (I) an animated virtual coach to 
deliver virtual instruction for any activity and (II) a subject-
model whose movements are animated by real-time sensor 
measurements using inertial sensors worn by a subject. In 
this paper, we test the WISE system’s accuracy and usability 
for assessment of upper limb ROM. 

Methods

Design of WISE system 

The WISE system consists of five wearable sensor modules 
affixed to the upper limb segments (Figure 1A). The sensors 
are labeled to correspond to placement on appropriate 
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limb segments, i.e., sensors marked LF (i.e., left forearm) 
and RF (i.e., right forearm) are placed above the wrist on 
the left and right forearms, respectively; sensors marked 
LA (i.e., left arm) and RA (i.e., right arm) are placed above 
the elbow on the left and right arms, respectively; and 
the sensor marked B is placed on the back. Each WISE 
sensor module (30) consists of a BNO055 MARG sensor 
interfaced with a Gazell-protocol endowed microcontroller 
(µC) soldered to a printed circuit board (PCB). The PCB is 
connected to a lithium-ion battery housed in a 3D-printed 
wearable enclosure. The µC retrieves absolute orientation 
measurement from the MARG sensor and wirelessly streams 
it to a computer. A Unity3D-based exergame interface was 
developed to use the sensor data for animating a 3D-human 
model, i.e., the subject-model. The salient features of the 
application include (I) a sensor calibration user-interface 
(UI) (Figure 1B), (II) a sensor mounting UI (Figure 1C), 
(III) a virtual exercise environment (Figure 1D), and (IV) 
an instructor-programming UI (Figure 1E). Each BNO055 
MARG sensor consists of in-built three-axes magnetometer, 
accelerometer, and gyroscope. The BNO055 sensor requires 
an initial calibration for streaming absolute orientation (31).  
A storage and cal ibration cube was designed and 
3D-printed to house the five WISE system modules and 
simultaneously calibrate all the sensors prior to placement 
on a subject (Figure 1F). Sensor calibration UI allows 
intuitive visualization of each WISE module’s calibration 
status. The sensor mounting UI is a virtual environment 
that utilizes the data streamed to provide instructions 
to the user in neutral pose for mounting the sensors 
on their body to obtain accurate ROM measurements 
(32). The virtual exercise environment consists of an 
instructor model performing ROM exercises that are to 
be performed by the subject. The upper extremity (UE) 
motion of the subject-model is animated by the real-
time data from the WISE modules worn by the subject. 
The instructor-programming environment allows an 
instructor to use the WISE modules to record exercises 
or activities in a flexible manner and replay them as 
“instructed exercises” performed by the virtual coach (32).  
We used the instructor-programming environment to 
record a series of ROM exercises using the WISE system 
for the testing protocol of this paper.

ROM measurements for WISE (30)

Each WISE module streams quaternion data of its 
orientation relative to the world coordinate frame (ℱW), 

which is represented by the direction of earth’s gravity and 
the magnetic north pole. Quaternions are four-tuple objects 
that provide a computationally effective way to represent 
orientation (33). A quaternion q = (qw qx qy qz) consists of a 
scalar part qw and a vector part [qx qy qz]

T. Three dimensional 
vectors are a subset of quaternions and a quaternion with its 
scalar part qw =0 is termed a vector quaternion. Other forms 
of orientation representation include Euler angles, axis/
angle representation, and rotation matrices (33). Consider 
the axis/angle representation (d, φ) where d = [dx dy dz]

T is 
the axis of rotation and φ is the angle of rotation, then the 
corresponding quaternion describing this rotation is given 
below. 

( ) cos sin sin sin
2 2 2 2d x y zq d d dϕ ϕ ϕ ϕϕ  =  

 
	 [1]

A vector V  expressed in a coordinate frame ℱ1( )1V  can 

be expressed in another coordinate frame ℱ2 ( )2V  by using 
the quaternion product shown below 

( ) ( ) ( ) ( )2 1 1 1 *
2 2 ,     0q V q q V q q V V= ⊗ ⊗ = 	 [2]

where “⊗” and “*” denote the quaternion product (27,34) 

and conjugate, ( )q V  denotes the vector quaternion of V , and 
1

2q  denotes the orientation of ℱ2 relative to ℱ1. 
Although quaternions provide an efficient tool 

for orientation computation, they are unintuitive for 
interpretation by rehabilitation practitioners. In contrast, 
Euler angles represent rotations of one coordinate frame 
relative to another characterized by simple rotations 
about their principal axes. The joint coordinate system 
(JCS) framework, proposed by the International Society 
of Biomechanics, recommends the use of Euler angles for 
extracting anatomical JAs for ease of use by practitioners (35).  
The UE JA measurements discussed in (35) utilize the 
proximal coordinate frame as a reference to describe the 
angular rotation of the distal coordinate frame, i.e., the 
shoulder and elbow JA computations use the back and arm 
WISE modules, respectively, as references. To produce a 
reference for the shoulder JA computation, the back WISE 
module’s quaternion is rotated and stored as qLBref and qRBref 
as below: 

BLBref RBref B2Zq q q qπ = = − ⊗ 
 

	 [3]

The sign convention for shoulder JA measurement is as 
follows: extension (−), flexion (+), adduction (−), abduction 
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(+), external rotation (−), and internal rotation (+). To follow 
a similar sign convention, the axes of qLA, qRA, qLBref, and qRBref 
are flipped [see Figure 2 where (·)† denotes the quaternions 
for the flipped coordinate frames]. This axis flipping 
operation is performed by converting the quaternions to 
rotation matrices (33), followed by multiplication of −1 to 
the row vectors corresponding to the coordinate axes that 
are to be flipped. Throughout the axes flipping operation, 
care is taken to ensure that the rotations follow the right-
hand rule. The relative quaternions between the shoulder 
and back’s reference coordinate frame are computed as 
below. 

† †
*

LS LBref LA
q q q= ⊗ 	 [4]

† †
*

RS RBref RA
q q q= ⊗ 	 [5]

To obtain the JA of the left and right shoulders, Wu 
et al. (35) suggest the use of the Y − X − Y' Euler angle 
convention. Since the five WISE modules were assigned 
sensor coordinate frames consistently (Figure 2), the 
appropriate placement and orientation of the LA and 
RA modules on arms required a slight adaptation of the 
framework of (35), leading to the use of Y − Z − Y' Euler 
angle convention (33) to obtain the JA of the left and right 
shoulders using the relative quaternions qLS and qRS. The 

quaternion to Euler angle conversion in the Y – Z − Y'  
framework produces angles θY, θZ, and θY + θY' that represent 
the shoulder plane, shoulder elevation, and shoulder 
internal-external rotation angles, respectively. In the JCS 
framework, the shoulder elevation angle θZ relates to 
shoulder flexion-extension when θY ≈90° and to shoulder 
abduction-adduction when θY ≈0° (35).

The elbow JA computation utilizes the JCS framework 
to compute the ROM for flexion-extension and pronation-
supination with the WISE system. Identical to the 
procedure of shoulder JCS ROM computation, qLA and qRA 
are used to create references qLAref and qRAref as below:

 

LALAref LA2Yq q qπ = ⊗ 
 

	 [6]

RARAref RA2Yq q qπ = − ⊗ 
 

	 [7]

To conserve the standard sign convention of elbow 
joint movements flexion (+), pronation (+), extension (−), 
and supination (−), the coordinate axes of qLAref, qRAref, qLF, 
and qRF are flipped similar to the procedure for shoulders. 
The relative quaternions between the elbow and shoulder’s 
reference coordinate frame are computed as below:

† †
*

LE LAref LF
q q q= ⊗ 	 [8]

† †
*

RE RAref RF
q q q= ⊗ 	 [9]

Figure 2 Coordinate frames and WISE module axes references for computation of shoulder and elbow joint angle orientations. WISE, 
wearable inertial sensors for exergames.

Arrow pointing
inwards

Arrow pointing
outwards
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To obtain the elbow JA, Wu et al. (35) suggest the use 
of the Z − X − Y Euler angle convention. Thus, using the 
relative quaternions qLE and qRE with the quaternion to Euler 
angle conversion in the Z − X − Y framework produces 
elbow  JA θZ, θX, and θY that correspond to the flexion-
extension, carrying, and pronation-supination angles, 
respectively. The carrying angle is the angle between the 
humerus and the ulna, which is constant depending on the 
gender of the person ranging between 8° to 20° (36,37). For 
further details on the mechanics of ROM measurements for 
WISE see (30). 

ROM measurements for Kinect

The Kinect provides a total of 25 joint coordinates of 
a human in 3D workspace extracted from the image 
and depth information (10). However, measurements 
from the Kinect do not yield sufficient information 
to characterize movement in the JCS framework. 
Specifically, by using the shoulder, elbow, and wrist 
positions obtained from the Kinect, it is not possible 
to resolve the three principal axes (35) corresponding 
to each of the shoulder and elbow joints. Thus, instead 
of using the JCS framework for computing shoulder 
abduction-adduction and flexion-extension, we adapt the 

vector projection approach of (19). 
To illustrate the JA computation from the Kinect, we 

use characters with bar accent to denote vectors, e.g., “ F ” 
and hat accent “ F̂ ” to denote coordinates of a point in the 
3D space. We begin by constructing a subject centric body 
coordinate frame for the UE (Figure 3) by using the real-
time joint positions obtained from the Kinect to compute 
the JA. The sagittal plane (SP), coronal plane (CP), and 
transverse plane (TP) divide the human body into the left-
right, frontal-rear, and top-bottom halves, respectively. The 
vectors NS , NC , and NT  represent vectors normal to the 
sagittal, coronal, and transverse planes, respectively. The LA 
and RA vectors are constructed by subtracting the proximal 
joint coordinate (shoulder) from the distal joint coordinate 
(elbow) as below.

{ }S E S
ˆ ˆ , ,F F F F L R= − ∀ ∈ 	 [10]

The shoulder JAs are defined as follows: (I) shoulder 
flexion-extension (θFE) is the movement of the arm vector 

SF  in a plane parallel to the sagittal plane and (II) shoulder 
abduction-adduction (θBD) is the movement of the arm 
vector in a plane parallel to the coronal plane. The angle 
calculation for these movements of the left shoulder are 
performed as below. 

Figure 3 Joint positions, joint vectors, and anatomical planes used to calculate joint angles using the Kinect.

Sagittal normal
Sagittal plane
Coronal normal
Coronal plane
Transverse normal
Transverse plane

LS: Left shoulder joint

LE: Left elbow joint

LW: Left wrist joint

SS: Spine shoulder

HL: Hip left

›
›

›
›

›

RS: Right shoulder joint

RE: Right elbow joint

RW: Right wrist joint

SB: Spine base

HR: Hip right

›
›

›
›

›
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( )LFE S N S Natan2 ,L C L Tθ ⋅= − ⋅ 	 [11]

( )LBD S N S Natan2 ,L S L Tθ ⋅= − ⋅ 	 [12]

The forearm vectors are constructed from the joint 
coordinates of elbows and wrists, similar to Eq. [10]. The 
left elbow flexion-extension αLFE angle computation is 
performed as below. 

( )1
LFE S Ecos L Lα −= ⋅ 	 [13]

Note that the forearm pronation-supination angle 
cannot be computed from the Kinect data due to the lack of 
sufficient information.

The shoulder internal-external rotation (θIE) of the LA or 
RA cannot be computed with the information of shoulder 
vectors SL  and SR . Hence, we utilize the information of 
the elbow vectors EL  and ER  to compute this angle by 
projecting it on the transverse plane as below, similar to the 
procedure in (19). 

( )LIE N E N E LFEatan2 , , 30C L S Lθ α⋅ ≥⋅= ° 	 [14]

Thus, the shoulder internal-external rotation calculation 
works only if the elbow is flexed beyond 30°. Finally, the 
computation for the right side of the body also utilizes 
similar equations as above and care is taken to ensure that 
extension, adduction, and external rotation are denoted 
as (−). Figure 3 illustrates all the UE joint coordinates and 
vectors used for the calculation of JA with the Kinect data.

Matching measurements from WISE and Kinect systems

As delineated above, unlike with the WISE system, 
measurements from the Kinect cannot use the JCS 
framework. Thus, the WISE system is modified to 
facilitate one-on-one comparison with the Kinect-based 
measurements of the computation of shoulder flexion-
extension {Eq. [11]} and abduction-adduction {Eq. [12]}. 
The modified approach, adapted from (19), is outlined 
below. 

The principal axes of the WISE module B (XB − YB − ZB)  
are used to recreate the transverse, sagittal, and coronal planes 
on the human body such that the XB, YB, and ZB axes are normal 
to the transverse, sagittal, and coronal planes, respectively. The 
(XB, YB, ZB) axes represented in the sensor coordinate frame 
ℱS are transformed to ( )B B B, ,X Y Z    in ℱW using Eq. [2]. The 
shoulder flexion-extension angle θFE and abduction-adduction 

angle θBD are computed for the LA as below.

( )LFE LA B LA Batan2 ,Y Z Y X⋅= ⋅θ   	 [15]

( )LBD LA B LA Batan2 ,Y Y Y X⋅= ⋅θ   	 [16]

The angles for the right side are computed similar to Eq. 
[15] and Eq. [16] so that the signs of flexion and abduction 
are (+). 

Subject recruitment and data collection

Seventeen healthy subjects (11 male and 6 female) were 
recruited for the study in the following age groups: 18–24 years  
(n=8), 25–34 years (n=6), 35–44 years (n=1), 45–54 years 
(n=1), and 55–64 years (n=1). The participants signed 
informed consent as approved by the NYU Institutional 
Review Board (IRB-FY2019-3426). Data collection took 
place at the Mechatronics, Controls, and Robotics Lab, 
NYU Tandon School of Engineering. The participants 
wore the WISE modules without any obstruction to their 
active ROM and stood at a distance of six feet in front of 
the Kinect with a white screen on their back to mitigate any 
changes to the ambient lighting. Video tutorials recorded 
with a 3D animated human model served as the virtual 
coach displayed on a television screen. The virtual coach 
demonstrated each exercise first and then instructed the 
subjects to perform the demonstrated exercises along with 
the coach for eight trials of the ten ROM exercises. At the 
end of the session, subjects were presented with a system 
usability scale (SUS) questionnaire that consisted of ten 
questions (with five positive and five negative statements). 
The questionnaire sought respondents’ opinion about using 
the virtual coach for ROM exercises on a five-point Likert 
scale. 

Using MATLAB version 2019a (MathWorks, Inc., 
Natick, MA, USA), a routine was created for real-time data 
acquisition to compare the WISE and Kinect measurements. 
The experimental setup is illustrated in Figure 4. Three user 
interfaces were created: (I) a video display for subjects to 
view the virtual coach (Figure 4B); (II) Kinect’s video stream 
superimposed with numerical values of the JAs computed 
from the Kinect and WISE systems (Figure 4E); and (III) 
animated plots for JA visualization from the Kinect and 
WISE systems. Each subject performed the ROM exercises 
in the following sequence: (I) left shoulder flexion-extension 
(θLFE), (II) left shoulder abduction-adduction (θLBD), (III) 



mHealth, 2021Page 8 of 15

© mHealth. All rights reserved. mHealth 2021;7:4 | http://dx.doi.org/10.21037/mhealth-19-199

left elbow flexion-extension from neutral-pose ( )1LFEα , (IV) 
left elbow flexion-extension with 90° shoulder abduction 

( )2LFEα , (V) left shoulder internal-external rotation with 90° 

elbow flexion (θLIE), (VI) right shoulder flexion-extension 
(θRFE), (VII) right shoulder abduction-adduction (θRBD), (VIII) 

right elbow flexion-extension from neutral-pose ( )1RFEα , (IX) 

right elbow flexion-extension with 90° shoulder abduction 

( )2RFEα , and (X) right shoulder internal-external rotation 

with 90°elbow flexion (θRIE). The complete procedure lasted 
approximately 20 minutes for each subject. The JA data 
computed from the Kinect and WISE systems were saved in 
a text file for post-processing. 

Data processing and statistical analysis

The data was analyzed using MATLAB with the command 
findpeaks to determine the peak ROM measured using 

the Kinect ( )K

E
ROMp  and WISE ( )W

E
ROMp  systems, where 

superscript “E” represents specific ROM exercises. The 
temporal signal for each movement was then spliced to 
separate the trials (see Figure 5). The ROM from the two 
systems were compared by determining the root mean 

square error (RMSE) ( )E
Si

R  for each trial, where subscripts 
“S” and “i” represent the subject number and trial number, 
respectively. The extracted peaks and RMSE were used 
to compute the mean error relative to the peak ROM 

( ( )K

E
S

R /p 1 E
ROM

1 in

i

i

R
n p

µ
=

= ∑ , where n=6trials×17subjects) (20), as well 

as the mean (μ) and standard deviation (σ) of the RMSE of 
trials two to seven across all subjects. 

MATLAB environment’s data acquisition used a line-by-
line program execution which caused a systematic lag/lead 
between the Kinect and WISE measurements. To mitigate 
the temporal error, we applied dynamic time warping 
(DTW) (38) to the Kinect and WISE measurements using 
the MATLAB command dtw similar to the procedure 
outlined in (14). Prior to applying DTW, the time series 
JA signals were scaled to [−1,1] by using the corresponding 
peak values for the Kinect and WISE measurements. 
Following the application of DTW, the data were rescaled 
by the peak values used previously for scaling. The peak and 
RMSE calculations described above were repeated using 
the JA output of DTW to compute the mean (μDTW) and 
standard deviation (σDTW) of the RMSE for each trial. 

The Bland-Altman statistic establishes the agreement 
between two measurement systems by computing the 
limits of agreement (LOA) (39). Following the application 
of DTW, the error signal between the Kinect and WISE 
measurement systems exhibited high kurtosis and skewness 
indicating a non-normal distribution. Thus, Kimber’s 
outlier rejection technique (40) was applied to reject 
outlier data points beyond [Q1 − γ(M − Q1), Q3 + γ(Q3 − 
M)], where Q1, Q3, and M denote the first quartile, third 
quartile, and median, respectively. The multiplier γ =1.5 
is a commonly used parameter for outlier rejection (40), 

Figure 4 Schematic representation of subject testing. (A) Subject wearing WISE modules and standing in front of the Kinect; (B) ROM 
exercises instructed by the virtual coach displayed on a TV screen; (C) Kinect markerless motion capture system; (D) tripod stand for 
mounting Kinect; (E) MATLAB interface for sampling data from the Kinect and WISE systems. WISE, wearable inertial sensors for 
exergames; ROM, range of motion.
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Figure 5 Kinect and WISE system data obtained from the right arm movements. WISE, wearable inertial sensors for exergames.

thus it was used for rejecting the outliers in the Kinect and 
WISE measurements. The outputs of the outlier rejection 
procedure also exhibited non-normal distributions in 
the error signal. Thus, the Bland-Altman test for non-

parametric signals, which defines the LOA as the median 
±1.45 times the interquartile range (i.e., M ±1.45× IQR), 
was applied to the remainder of the Kinect and WISE data 
after the outlier rejection. The peaks obtained from the 
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Kinect and WISE measurements after DTW were also used 
to compute the intra-class correlation coefficients (ICC). 
Two methods were used to determine (I) the test-retest 
consistency [ICC(C,1)] of the Kinect (ICCK) and WISE 
(ICCW) between trials and (II) the absolute agreement 
[ICC(A,1)] between the measurements of ROM peaks of 
the Kinect and WISE (ICCK/W) (41). The SUS responses 
for ten questions obtained from the subjects were analyzed 
for reliability using the Cronbach’s alpha (42,43) and the 
final SUS score was computed using the method described 
in (44). 

Results

The mean and standard deviations of the RMSE between 
the JA measurements obtained from the Kinect and WISE 
systems for 17 subjects and 10 ROM exercises, Bland-
Altman LOA, ICC for each device (ICCK, ICCW), and the 
absolute agreement between the two devices (ICCK/W) are 
shown in Table 1. The mean of the RMSE shows that the 
ROM measurements in the coronal, transverse, and sagittal 
planes had errors of less than 9°, 10°, and 12°, respectively. 
After the application of DTW, the mean RMSE errors in 
the coronal, transverse, and sagittal planes decreased to less 
than 8°, 8°, and 10°, respectively. The Bland-Altman LOA, 
with 95% confidence intervals, for ROM measurements in 
the coronal, transverse, and sagittal planes were determined 
to be in the range of (−12.0°, 10.0°), (−9.5°, 10°), and 

(−14.0°, 18.0°), respectively. The ICC for the Kinect (ICCK) 
and WISE (ICCW) systems indicated very good repeatability 
within each system especially for RA movements and 
slightly lower for left arm movements. The ICC was lowest 
for the left shoulder internal-external rotation. The ICCK/W,  
which compared the consistency between the Kinect 
and the WISE systems, showed moderate to very good 
agreement for all movements except the left and right elbow 
flexion-extension from the neutral-pose. 

The Bland-Altman plots (i.e., mean versus difference) 
for the DTW-processed signals of the Kinect and WISE 
systems for the 10 ROM exercises are presented in Figure 6.  
The measurements for coronal plane ROM exercises (I) 
left and right elbow flexion-extension with 90° shoulder 
abduction and (II) right shoulder abduction-adduction 
produced Bland-Altman LOA within ±10°. However, for 
left shoulder abduction-adduction measurements the LOA 
was (−12.0°, 9.4°), which is slightly higher than the ±10° 
range. The transverse plane ROM exercises for the left and 
right shoulder internal-external rotation with 90° elbow 
flexion were also within the ±10° acceptance limits. 

The SUS response percentages are plotted in a bar chart 
as shown in Figure 7. The Cronbach’s alpha for the five-
point SUS scale for the ten questions was computed to 
be above 0.7, indicating acceptable reliability. A majority 
of the users found the virtual coach-based ROM tutoring 
system to be easy to use (82% strongly agreed) and well-
integrated (82% agreed or strongly agreed) and reported 

Table 1 The mean and standard deviation of the root mean square error for each trial before and after dynamic time warping between the Kinect 
and WISE measurements, mean error relative to peak ROM, Bland-Altman limits of agreement, intra-class correlation coefficients for consistency  
within each measurement system and between the two systems

ROM exercise
RMSE trials  

μ (σ)
RMSE trials 

(DTW), μDTW (σDTW)
μR/p

Bland-Altman limits of 
agreement (LOA)

ICCK ICCW ICCK/W

Left shoulder flexion-extension 11.16 (2.90) 9.25 (2.36) 0.067 −13.3°, 18.3° 0.73 0.65 0.81

Left shoulder abduction-adduction 8.84 (2.83) 7.01 (2.54) 0.052 −11.8°, 9.4° 0.70 0.68 0.71

Left shoulder internal-external rotation 9.23 (3.76) 7.86 (3.08) 0.190 −8.6°, 10.0° 0.46 0.55 0.57

Left elbow flexion-extension from neutral-pose 11.07 (3.43) 9.04 (3.77) 0.079 −14.1°, 7.5° 0.69 0.71 0.10

Left elbow flexion-extension after 90° abduction 7.72 (2.82) 6.28 (2.57) 0.064 −9.0°, 7.4° 0.69 0.64 0.62

Right shoulder flexion-extension 10.60 (2.37) 9.50 (2.51) 0.065 −12.6°, 14.3° 0.90 0.89 0.68

Right shoulder abduction-adduction 8.70 (2.30) 7.82 (3.12) 0.053 −9.0°, 6.5° 0.82 0.88 0.75

Right shoulder internal-external rotation 9.52 (3.61) 7.52 (3.27) 0.213 −8.3°, 8.7° 0.75 0.81 0.69

Right elbow flexion-extension from neutral-pose 11.29 (3.10) 9.62 (3.88) 0.082 −12.4°, 6.7° 0.89 0.83 0.15

Right elbow flexion-extension after 90° abduction 8.21 (2.57) 6.32 (3.39) 0.067 −10.0°, 7.0° 0.66 0.70 0.55
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Figure 6 Bland-Altman plots for all 10 ROM exercises. WISE, wearable inertial sensors for exergames; ROM, range of motion.
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that they would be confident in using it (88% strongly 
agreed) and would like to use it (82% agreed or strongly 
agreed). Overall, the SUS score showed relatively high third 
and first quartile scores of 97.5 and 82.5, respectively, with 
the interquartile range of 15 and the minimum score of 65, 
suggesting that the subjects were interested in using the 
animated virtual coach for the guided ROM exercises. 

Discussion 

Accurate assessment of ROM limitations and compliance 
monitoring of exercises to restore movement are necessary 
to assess and tailor treatments for individuals with motor 
deficits across care settings. In this paper, we presented the 
overview of the WISE system consisting of: (I) an animated 
virtual coach to deliver virtual instruction for any activity 
and (II) a subject-model whose movements are animated by 
the real-time sensor measurements using inertial sensors 
worn by a subject. We compared the accuracy and usability 

of the WISE system for assessment of upper limb ROM 
with the Kinect, which has been used extensively in prior 
studies as a markerless motion capture system for exergames 
and rehabilitation. 

The results show moderate to very good within-device 
agreement for each of the measurement systems. The 
discrepancy between the two devices was within ±10° for 
most of the ROM exercises. The between-device agreement 
was moderate to very good in the coronal and transverse 
planes for the following ROM exercises: (I) shoulder 
abduction-adduction, (II) elbow flexion-extension with 
the shoulder abducted at 90°, and (III) shoulder internal-
external rotation. Even though, there are no quantified 
clinical acceptance limits for the ROM assessment, prior 
literature (8) has suggested ±10° as acceptable LOA for the 
Bland-Altman statistic. Furthermore, the RMSE and Bland-
Altman LOA results suggest the concurrence between the 
two measurement systems was best in the coronal plane. 
However, the RMSE for exercises in the sagittal plane, 

Figure 7 Horizontal bar chart of responses (in percentage) of the system usability scale.
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i.e., (I) elbow flexion-extension from neutral-pose and (II) 
shoulder flexion-extension showed greater discrepancy 
between the two devices. These discrepancies persisted 
despite the adaptation of the Kinect-based vector projection 
method (19) for computing JAs with the WISE system. 
This can be explained by the problem of joint occlusion 
during movements in the sagittal plane when the Kinect 
is placed in front of the subject (22). Alternatively, when 
the elbow flexion-extension exercise was performed with 
the shoulder abducted at 90°, the occlusion did not occur 
and resulted in the least discrepancy between the two 
systems. Next, the ROM exercises for internal-external 
rotation in the transverse plane were modified by the 
introduction of 90° elbow flexion, which enabled the use 
of elbow vector obtained from the Kinect measurements 
for the computation of shoulder internal-external 
rotation angle. Furthermore, the forearm pronation-
supination angles could not be computed from the Kinect 
measurements. Although Kinect has been used extensively 
for exergames and rehabilitation, above results suggest that 
JA measurements from such markerless motion capture 
devices lack the ability to resolve motion in three planes 
of movement for each joint (i.e., shoulder and elbow) as 
required by the JCS framework. In contrast, the WISE 
system provides a robust integration of measurements from 
multiple wearable sensors for the shoulder and elbow joints 
allowing continuous real-time measurements of JAs in three 
planes for each joint. Finally, the SUS scores suggest that 
subjects were interested in using the animated virtual coach 
for the guided ROM exercises. 

In a prior study, we developed a method to remotely 
assess grasping performance using real-time data (45) in 
patients with multiple sclerosis (46). Using the WISE 
system, a similar telerehabilitation intervention can be 
developed for patients in need of UE ROM assessment and 
rehabilitation exercises. In such a scenario, the therapists can 
use the virtual coach to provide an individualized battery 
of exercises, enabling patients to perform exercises at home 
while asynchronous measurements using the WISE platform 
can capture and transmit the information to the therapist. 
The granular ROM data in all three planes can be useful 
to bridge the gap between laboratory research on motion 
analysis and translation to clinical practice. Although the 
current implementation of the WISE system was restricted 
to a computer-based interface, in our prior work we have 
demonstrated the feasibility of interfacing medical devices 
with smartphones (47). In a similar vein, the WISE system 
can be interfaced to mobile devices such as tablets and 

smartphones to render a portable mHealth system. Future 
work will consider the use of the WISE virtual coach and 
a guided mounting interface for the sensors, as well as 
feedback systems that enable the virtual coach to tailor 
exercises based on the data acquired from the sensors. 
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