Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions

Brian C. S. Loh, Patrick H. H. Then


Cardiovascular diseases are one of the top causes of deaths worldwide. In developing nations and rural areas, difficulties with diagnosis and treatment are made worse due to the deficiency of healthcare facilities. A viable solution to this issue is telemedicine, which involves delivering health care and sharing medical knowledge at a distance. Additionally, mHealth, the utilization of mobile devices for medical care, has also proven to be a feasible choice. The integration of telemedicine, mHealth and computer-aided diagnosis systems with the fields of machine and deep learning has enabled the creation of effective services that are adaptable to a multitude of scenarios. The objective of this review is to provide an overview of heart disease diagnosis and management, especially within the context of rural healthcare, as well as discuss the benefits, issues and solutions of implementing deep learning algorithms to improve the efficacy of relevant medical applications.